Labels

quinta-feira, 21 de agosto de 2014

Teorias Envolvendo Tempo - Teoria do Caos



É uma das leis mais importantes do Universo, presente na essência de quase tudo o que nos cerca. A idéia central da teoria do caos é que uma pequenina mudança no início de um evento qualquer pode trazer conseqüências enormes e absolutamente desconhecidas no futuro. Por isso, tais eventos seriam praticamente imprevisíveis - caóticos, portanto. Parece assustador, mas é só dar uma olhada nos fenômenos mais casuais da vida para notar que essa idéia faz sentido. Imagine que, no passado, você tenha perdido o vestibular na faculdade de seus sonhos porque um prego furou o pneu do ônibus. Desconsolado, você entra em outra universidade. Então, as pessoas com quem você vai conviver serão outras, seus amigos vão mudar, os amores serão diferentes, seus filhos e netos podem ser outros...


No final, sua vida se alterou por completo, e tudo por causa do tal prego no início dessa seqüência de eventos! Esse tipo de imprevisibilidade nunca foi segredo, mas a coisa ganhou ares de estudo científico sério no início da década de 1960, quando o meteorologista americano Edward Lorenz descobriu que fenômenos aparentemente simples têm um comportamento tão caótico quanto a vida. Ele chegou a essa conclusão ao testar um programa de computador que simulava o movimento de massas de ar. Um dia, Lorenz teclou um dos números que alimentava os cálculos da máquina com algumas casas decimais a menos, esperando que o resultado mudasse pouco. Mas a alteração insignificante, equivalente ao prego do nosso exemplo, transformou completamente o padrão das massas de ar. Para Lorenz, era como se "o bater das asas de uma borboleta no Brasil causasse, tempos depois, um tornado no Texas". Com base nessas observações, ele formulou equações que mostravam o tal "efeito borboleta".

Estava fundada a teoria do caos. Com o tempo, cientistas concluíram que a mesma imprevisibilidade aparecia em quase tudo, do ritmo dos batimentos cardíacos às cotações da Bolsa de Valores. Na década de 70, o matemático polonês Benoit Mandelbrot deu um novo impulso à teoria ao notar que as equações de Lorenz batiam com as que ele próprio havia feito quando desenvolveu os fractais, figuras geradas a partir de fórmulas que retratam matematicamente a geometria da natureza, como o relevo do solo ou as ramificações de nossas veias e artérias. A junção do experimento de Lorenz com a matemática de Mandelbrot indica que o caos parece estar na essência de tudo, moldando o Universo. "Lorenz e eu buscávamos a mesma verdade, escondida no meio de uma grande montanha.

A diferença é que escavamos a partir de lugares diferentes", diz Mandelbrot, hoje na Universidade de Yale, nos Estados Unidos. E pesquisas recentes mostraram algo ainda mais surpreendente: equações idênticas aparecem em fenômenos caóticos que não têm nada a ver uns com os outros. "As equações de Lorenz para o caos das massas de ar surgem também em experimentos com raio laser, e as mesmas fórmulas que regem certas soluções químicas se repetem quando estudamos o ritmo desordenado das gotas de uma torneira", afirma o matemático Steven Strogatz, da Universidade Cornell, nos Estados Unidos. Isso significa que pode haver uma estranha ordem por trás de toda a imprevisibilidade. Só a continuação das "escavações" pode resolver o mistério.



A ideia é que uma pequena variação nas condições em determinado ponto de um sistema dinâmico pode ter consequências de proporções inimagináveis. "O bater de asas de uma borboleta em Tóquio pode provocar um furacão em Nova Iorque."
Ao efeito da realimentação do erro foi chamado mais tarde por Lorenz de Efeito Borboleta, ou seja, uma dependência sensível dos resultados finais às condições iniciais da alimentação dos dados. Assim, havendo uma distância, mesmo que ínfima, entre dois pontos iniciais diferentes, depois de um tempo os pontos estariam completamente separados e irreconhecíveis.

Normalmente este efeito é ilustrado com a noção de que o bater das asas de uma borboleta num extremo do globo terrestre, pode provocar uma tormenta no outro extremo no intervalo de tempo de semanas.

É por esse motivo que as previsões meteorológicas possuem erros. Para evitar tais erros precisaríamos de medidas exatas de muitas variáveis (pressão, temperatura...) em praticamente todos os pontos do globo terreste, o que, atualmente, é impraticável. Além da falta de medidas, as medidas tomadas possuem ainda um certo grau de erro, gerando os problemas que conhecemos para as previsões.
Em 1976 Rössler estudou o sistema:



{x} = -(y+z)
 {y} = x + ay
{z} = b + xz - cz


Para valores pequenos do parâmetro c as trajetórias do sistema, atingem um estado estacionário que é um ciclo com período simples.
O diagrama de órbitas mostra numa forma compacta o comportamento de um sistema dinâmico, em função do valor de um parâmetro. Para cada valor do parâmetro, dentro de um intervalo que admita soluções não divergentes, calculam-se vários pontos da solução do sistema, e eliminam-se alguns pontos no início para eliminar qualquer estado transitório inicial.